* Prager

* Spiritual thought

* About a homocoork problem:

$$y_1$$
 is the solution to
$$\begin{cases} y'' - xy' - y = 0 \\ y(0) = 1 \end{cases} \longrightarrow y_1 = \sum h x^h$$

$$y'(0) = 0$$

$$y_2$$
 is the solution to
$$\begin{cases} y'' - xy' - y = 0 \\ y(0) = 0 \end{cases} \longrightarrow y_2 = \sum_{i=1}^n x_i^n$$

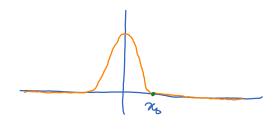
$$\begin{cases} y''(0) = 1 \end{cases}$$

A drawback of the power-serves method is that the solution found has to be an analytic function.

If f is analytic at no then f is infinitely differentiable at no. If f is not differentiable infinitely many times at no their it is not analytic at no.

However, being infinitely differentiable is not a guarantee for a function of be analytiz.

Ex:



 $f(x_0) = 0 \quad \forall n.$ If $f(x) = 0 \quad \forall n.$ $f(x) = \sum_{n=1}^{\infty} a_n x^n \quad \text{on some}$ $\text{interval } (n_0 - r, x_0 + r).$

Tuylor:
$$a_n = \frac{f^{(n)}(x_0)}{n!} = 6$$
 $\forall n$

 \sim f(x) = 0 for all x \in (x₀-r, x₀+r) \sim Contradiction!

Question: How do we know if a function is analytic at a given point?

An elementary function (polynomial, fractional, exponential, logarithmic,
tryonometric and the combinations) is analytic at any point where it
is continuous.

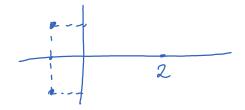
En: \frac{1}{2} is analytic at any \$1.5\int 6.

$$\frac{1}{\lambda} = \sum_{n=1}^{\infty} q_n(\lambda - \lambda \delta)^n$$
radius of CMV. = $|n_0|$.

Ex: $ln(a^2-1)$ is analytic at any $n_0 < -1$ or >1.

radius of
$$conv. = min \{l^{20}-ll, l^{20}-ll\}$$

$$\frac{E_n}{2}$$
 $\frac{n+2}{n^2+2n+2}$ is analytic at any $n \in \mathbb{R}$.



Radius of conv. 15

Whin
$$\{ | x_0 - (1-i) |, | x_0 - (1+i) | \}$$

$$= | x_0 - (-1+i) | = | x_0 + (-i) |$$

$$= \sqrt{(x_0 + i)^2 + 1}$$

Questin : when does the power series method work?

$$y^{(n)} + p_i(x)y^{(n-1)} + \dots + p_n(x)y = g(x), \quad y^{(x_0)} = y_0, \dots, y^{(n-1)}(x_0) = y_0^{(n-1)}$$
 (x)

If p_i, p_i, \dots, p_n, g are analytic at as then (x) has a unique

analytic solution $y = \sum q_n(r-r_0)^n$.

$$E_{x}$$
: $\chi \ln(1-x) y' + e^{2}y = \sqrt{2}$, $y(\frac{1}{3}) = 1$.

$$y' + \frac{e^{x}}{x \ln(1-x)} y = \frac{\sqrt{x}}{2 \ln(1-x)}$$

$$analytiz \qquad analytic \qquad at x=1/3$$

$$y = \sum a_n (n - \frac{1}{3})^n \longrightarrow radius of convergue $\geq \frac{1}{3}$.$$